Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Toxicol Environ Health A ; 86(23): 909-927, 2023 12 02.
Article in English | MEDLINE | ID: mdl-37698070

ABSTRACT

Imperial Valley, California has become increasingly hot, dry, and polluted over the past decade. Particulate matter (PM) levels are amongst the highest in this State, associated with significantly higher asthma prevalence among children in the region compared to national and state averages. The present study was performed to test the hypothesis that Imperial Valley PM by size and chemical composition might possess allergenic properties following introduction into murine lungs without prior sensitization to a known allergen with size fraction as a determining factor. In acute exposure experiments, BALB/c male mice were administered a single 50-µl oropharyngeal aspiration of nanopure water (H2O; control) or a stock 1 µg/µl PM solution. In sub-acute exposure experiments, male and female mice were treated with a total of six 16.6-µl intranasal instillations of H2O or stock PM solution over the course of 14 days. In all experiments, pulmonary function tests were performed 24 hr after the final instillation followed by necropsies for the collection of biological samples. Inflammatory responses measured via cellularity in histopathological tissue sections as well as significant, marked influxes of eosinophils and lymphocytes were noted in the bronchoalveolar lavage fluid in mice administered PM compared to control. Allergic responses, including airway hyperresponsiveness and significantly increased expression of IL-1ß, were found in male mice exposed to either PM2.5 or ultrafine (PMUF). A combination of all three size fractions of PM from Imperial Valley initiated atopic and asthmatic-like symptoms in the lungs of mice in the absence of additional allergen or preexisting condition.


Subject(s)
Asthma , Female , Male , Animals , Mice , Asthma/chemically induced , California , Inflammation/chemically induced , Mice, Inbred BALB C , Particulate Matter/toxicity , Allergens
2.
Front Cell Neurosci ; 16: 861733, 2022.
Article in English | MEDLINE | ID: mdl-35530180

ABSTRACT

Epidemiological studies have demonstrated that air pollution is a significant risk factor for age-related dementia, including Alzheimer's disease (AD). It has been posited that traffic-related air pollution (TRAP) promotes AD neuropathology by exacerbating neuroinflammation. To test this hypothesis, serum and hippocampal cytokines were quantified in male and female TgF344-AD rats and wildtype (WT) Fischer 344 littermates exposed to TRAP or filtered air (FA) from 1 to 15 months of age. Luminex™ rat 23-cytokine panel assays were used to measure the levels of hippocampal and serum cytokines in 3-, 6-, 10-, and 15-month-old rats (corresponding to 2, 5, 9, and 14 months of exposure, respectively). Age had a pronounced effect on both serum and hippocampal cytokines; however, age-related changes in hippocampus were not mirrored in the serum and vice versa. Age-related changes in serum cytokine levels were not influenced by sex, genotype, or TRAP exposure. However, in the hippocampus, in 3-month-old TgF344-AD and WT animals, TRAP increased IL-1ß in females while increasing TNF ɑin males. In 6-month-old animals, TRAP increased hippocampal levels of M-CSF in TgF344-AD and WT females but had no significant effect in males. At 10 and 15 months of age, there were minimal effects of TRAP, genotype or sex on hippocampal cytokines. These observations demonstrate that TRAP triggers an early inflammatory response in the hippocampus that differs with sex and age and is not reflected in the serum cytokine profile. The relationship of TRAP effects on cytokines to disease progression remains to be determined.

3.
Environ Toxicol Pharmacol ; 93: 103875, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35550873

ABSTRACT

Chronic exposure to traffic-related air pollution (TRAP) is known to promote systemic inflammation, which is thought to underlie respiratory, cardiovascular, metabolic and neurological disorders. It is not known whether chronic TRAP exposure dampens inflammation resolution, the homeostatic process for stopping inflammation and repairing damaged cells. In vivo, inflammation resolution is facilitated by bioactive lipid mediators known as oxylipins, which are derived from the oxidation of polyunsaturated fatty acids. To understand the effects of chronic TRAP exposure on lipid-mediated inflammation resolution pathways, we measured total (i.e. free+bound) pro-inflammatory and pro-resolving lipid mediators in serum of female rats exposed to TRAP or filtered air (FA) for 14 months. Compared to rats exposed to FA, TRAP-exposed rats showed a significant 36-48% reduction in fatty acid alcohols, specifically, 9-hydroxyoctadecadienoic acid (9-HODE), 11,12-dihydroxyeicosatetraenoic acid (11,12-DiHETE) and 16,17-dihydroxydocosapentaenoic acid (16, 17-DiHDPA). The decrease in fatty acid diols (11,12-DiHETE and 16, 17-DiHDPA) corresponded to a significant 34-39% reduction in the diol to epoxide ratio, a marker of soluble epoxide hydrolase activity; this enzyme is typically upregulated during inflammation. The findings demonstrate that 14 months exposure to TRAP reduced pro-inflammatory 9-HODE concentration and dampened soluble epoxide hydrolase activation, suggesting adaptive immune changes in lipid mediator pathways involved in inflammation resolution.


Subject(s)
Air Pollution , Linoleic Acid , Animals , Epoxide Hydrolases , Female , Inflammation/metabolism , Oxylipins/metabolism , Rats
4.
Toxicol Rep ; 9: 432-444, 2022.
Article in English | MEDLINE | ID: mdl-35310146

ABSTRACT

Background: Traffic-related air pollution (TRAP) is linked to increased risk for age-related dementia, including Alzheimer's disease (AD). The gut microbiome is posited to influence AD risk, and an increase in microbial-derived secondary bile acids (BAs) is observed in AD patients. We recently reported that chronic exposure to ambient TRAP modified AD risk in a sex-dependent manner in the TgF344 AD (TG) rat. Objectives: In this study, we used samples from the same cohort to test our hypothesis that TRAP sex-dependently produces gut dysbiosis and increases secondary BAs to a larger extent in the TG rat relative to wildtype (WT) controls. Methods: Male and female TG and age-matched WT rats were exposed to either filtered air (FA) or TRAP from 28 days up to 15 months of age (n = 5-6). Tissue samples were collected after 9 or 14months of exposure. Results: At 10 months of age, TRAP tended to decrease the alpha diversity as well as the beneficial taxa Lactobacillus and Ruminococcus flavefaciens uniquely in male TG rats as determined by 16 S rDNA sequencing. A basal decrease in Firmicutes/Bacteroidetes (F/B) ratio was also noted in TG rats at 10 months. At 15 months of age, TRAP altered inflammation-related bacteria in the gut of female rats from both genotypes. BAs were more affected by chronic TRAP exposure in females, with a general trend of increase in host-produced unconjugated primary and microbiota-produced secondary BAs. Most of the mRNAs of the hepatic BA-processing genes were not altered by TRAP, except for a down-regulation of the BA-uptake transporter Ntcp in males. Conclusion: In conclusion, chronic TRAP exposure produced distinct gut dysbiosis and altered BA homeostasis in a sex and host genotype-specific manner.

5.
Environ Sci Technol ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35235290

ABSTRACT

Epidemiological and toxicological studies continue to demonstrate correlative and causal relationships between exposure to traffic-related air pollution and various metrics of adverse pulmonary, cardiovascular, and neurological health effects. The key challenge for in vivo studies is replicating real-world, near-roadway exposure dynamics in laboratory animal models that mimic true human exposures. The advantage of animal models is the accelerated time scales to show statistically significant physiological and/or behavioral response. This work describes a novel exposure facility adjacent to a major freeway tunnel system that provides a platform for real-time chronic exposure studies. The primary conclusion is that particulate matter (PM) concentrations at this facility are routinely well below the National Ambient Air Quality Standards (NAAQS), but studies completed to date still demonstrate significant neurological and cardiovascular effects. Internal combustion engines produce large numbers of ultrafine particles that contribute negligible mass to the atmosphere relative to NAAQS regulated PM2.5 but have high surface area and mobility in the body. It is posited here that current federal and state air quality standards are thus insufficient to fully protect human health, most notably the developing and aging brain, due to regulatory gaps for ultrafine particles.

6.
Toxicol Lett ; 354: 33-43, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34757175

ABSTRACT

Epidemiological studies show strong associations between fine particulate matter (PM2.5) air pollution and adverse pulmonary effects. In the present study, wintertime PM2.5 samples were collected from three geographically similar regions-Sacramento, California, USA; Jinan, Shandong, China; and Taiyuan, Shanxi, China-and extracted to form PMCA, PMSD, and PMSX, respectively, for comparison in a BALB/c mouse model. Each of four groups was oropharyngeally administered Milli-Q water vehicle control (50 µL) or one type of PM extract (20 µg/50 µL) five times over two weeks. Mice were necropsied on post-exposure days 1, 2, and 4 and examined using bronchoalveolar lavage (BAL), histopathology, and assessments of cytokine/chemokine mRNA and protein expression. Chemical analysis demonstrated all three extracts contained black carbon, but PMSX contained more sulfates and polycyclic aromatic hydrocarbons (PAHs) associated with significantly greater neutrophil numbers and greater alveolar/bronchiolar inflammation on post-exposure days 1 and 4. On day 4, PMSX-exposed mice also exhibited significant increases in interleukin-1 beta, tumor necrosis factor-alpha, and chemokine C-X-C motif ligands-3 and -5 mRNA, and monocyte chemoattractant protein-1 protein. These combined findings suggest greater sulfate and PAH content contributed to a more intense and progressive inflammatory response with repeated PMSX compared to PMCA or PMSD exposure.


Subject(s)
Air Pollutants/adverse effects , Geography , Inhalation Exposure/adverse effects , Lung Diseases/chemically induced , Lung Diseases/physiopathology , Particulate Matter/adverse effects , Seasons , Animals , California , China , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred BALB C
7.
Environ Health Perspect ; 129(5): 57005, 2021 05.
Article in English | MEDLINE | ID: mdl-33971107

ABSTRACT

BACKGROUND: Epidemiological data link traffic-related air pollution (TRAP) to increased risk of Alzheimer's disease (AD). Preclinical data corroborating this association are largely from studies of male animals exposed acutely or subchronically to high levels of isolated fractions of TRAP. What remains unclear is whether chronic exposure to ambient TRAP modifies AD risk and the influence of sex on this interaction. OBJECTIVES: This study sought to assess effects of chronic exposure to ambient TRAP on the time to onset and severity of AD phenotypes in a preclinical model and to determine whether sex or genetic susceptibility influences outcomes. METHODS: Male and female TgF344-AD rats that express human AD risk genes and wildtype littermates were housed in a vivarium adjacent to a heavily trafficked tunnel in Northern California and exposed for up to 14 months to filtered air (FA) or TRAP drawn from the tunnel and delivered to animals unchanged in real time. Refractive particles in the brain and AD phenotypes were quantified in 3-, 6-, 10-, and 15-month-old animals using hyperspectral imaging, behavioral testing, and neuropathologic measures. RESULTS: Particulate matter (PM) concentrations in TRAP exposure chambers fluctuated with traffic flow but remained below 24-h PM with aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) U.S. National Ambient Air Quality Standards limits. Ultrafine PM was a predominant component of TRAP. Nano-sized refractive particles were detected in the hippocampus of TRAP animals. TRAP-exposed animals had more amyloid plaque deposition, higher hyperphosphorylated tau levels, more neuronal cell loss, and greater cognitive deficits in an age-, genotype-, and sex-dependent manner. TRAP-exposed animals also had more microglial cell activation, but not astrogliosis. DISCUSSION: These data demonstrate that chronic exposure to ambient TRAP promoted AD phenotypes in wildtype and genetically susceptible rats. TRAP effects varied according to age, sex, and genotype, suggesting that AD progression depends on complex interactions between environment and genetics. These findings suggest current PM2.5 regulations are insufficient to protect the aging brain. https://doi.org/10.1289/EHP8905.


Subject(s)
Air Pollution , Alzheimer Disease , Traffic-Related Pollution , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , Alzheimer Disease/genetics , Animals , Female , Genetic Predisposition to Disease , Male , Phenotype , Rats , Traffic-Related Pollution/adverse effects , Traffic-Related Pollution/statistics & numerical data
8.
Front Toxicol ; 3: 787360, 2021.
Article in English | MEDLINE | ID: mdl-35295139

ABSTRACT

Interleukin 22 (IL-22) is critically involved in gut immunity and host defense and primarily produced by activated T cells. In different circumstances IL-22 may contribute to pathological conditions or act as a cancer promoting cytokine secreted by infiltrating immune cells. Here we show that bone marrow-derived macrophages (BMM) express and produce IL-22 after activation of the aryl hydrocarbon receptor (AhR) when cells are activated through the Toll-like receptor (TLR) family. The additional activation of AhR triggered a significant induction of IL-22 in TLR-activated BMM. Deletion and mutation constructs of the IL-22 promoter revealed that a consensus DRE and RelBAhRE binding element are necessary to mediate the synergistic effects of AhR and TLR ligands. Inhibitor studies and analysis of BMM derived from knockout mice confirmed that the synergistic induction of IL-22 by AhR and TLR ligands depend on the expression of AhR and Nuclear Factor-kappa B (NF-κB) member RelB. The exposure to particulate matter (PM) collected from traffic related air pollution (TRAP) and wildfires activated AhR as well as NF-κB signaling and significantly induced the expression of IL-22. In summary this study shows that simultaneous activation of the AhR and NF-κB signaling pathways leads to synergistic and prolonged induction of IL-22 by integrating signals of the canonical and non-canonical AhR pathway.

9.
Environ Health Perspect ; 128(12): 127003, 2020 12.
Article in English | MEDLINE | ID: mdl-33275451

ABSTRACT

BACKGROUND: Traffic-related air pollution (TRAP) is made up of complex mixtures of particulate matter, gases and volatile compounds. However, the effects of TRAP on the cardiopulmonary system in most animal studies have been tested using acute exposure to singular pollutants. The cardiopulmonary effects and molecular mechanisms in animals that are chronically exposed to unmodified air pollution as a whole have yet to be studied. Additionally, sex-dependent toxicity of TRAP exposure has rarely been evaluated. OBJECTIVES: This study sought to assess the cardiopulmonary effect of chronic exposure to unmodified, real-world TRAP in both female and male rats. METHODS: Four-week-old male and female rats were exposed to TRAP or filtered air for 14 months in a novel facility drawing air from a major freeway tunnel system in Northern California. Inflammation and oxidative stress markers were examined in the lung, heart, spleen, and plasma, and TRAP deposits were quantified in the lungs of both male and female rats. RESULTS: Elemental analysis showed higher levels of eight elements in the female lungs and one element in the male lungs. Expression of genes related to fibrosis, aging, oxidative stress, and inflammation were higher in the rat hearts exposed to TRAP, with female rats being more susceptible than males. Enhanced collagen accumulation was found only in the TRAP-exposed female hearts. Plasma cytokine secretion was higher in both female and male rats, but inflammatory macrophages were higher only in TRAP-exposed male spleens. DISCUSSION: Our results in rats suggest pathological consequences from chronic TRAP exposure, including sex differences indicating females may be more susceptible to TRAP-induced cardiac fibrosis. https://doi.org/10.1289/EHP7045.


Subject(s)
Air Pollution/statistics & numerical data , Vehicle Emissions , Animals , Exercise Test , Female , Male , Rats , Toxicity Tests, Chronic
10.
Transl Psychiatry ; 10(1): 289, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807767

ABSTRACT

Epidemiological studies consistently implicate traffic-related air pollution (TRAP) and/or proximity to heavily trafficked roads as risk factors for developmental delays and neurodevelopmental disorders (NDDs); however, there are limited preclinical data demonstrating a causal relationship. To test the effects of TRAP, pregnant rat dams were transported to a vivarium adjacent to a major freeway tunnel system in northern California where they were exposed to TRAP drawn directly from the face of the tunnel or filtered air (FA). Offspring remained housed under the exposure condition into which they were born and were tested in a variety of behavioral assays between postnatal day 4 and 50. To assess the effects of near roadway exposure, offspring of dams housed in a standard research vivarium were tested at the laboratory. An additional group of dams was transported halfway to the facility and then back to the laboratory to control for the effect of potential transport stress. Near roadway exposure delayed growth and development of psychomotor reflexes and elicited abnormal activity in open field locomotion. Near roadway exposure also reduced isolation-induced 40-kHz pup ultrasonic vocalizations, with the TRAP group having the lowest number of call emissions. TRAP affected some components of social communication, evidenced by reduced neonatal pup ultrasonic calling and altered juvenile reciprocal social interactions. These findings confirm that living in close proximity to highly trafficked roadways during early life alters neurodevelopment.


Subject(s)
Neurodevelopmental Disorders , Vehicle Emissions , Animals , Environmental Exposure , Female , Neurodevelopmental Disorders/etiology , Phenotype , Pregnancy , Rats , Risk Factors
11.
Transl Psychiatry ; 10(1): 166, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32483143

ABSTRACT

Epidemiological studies link traffic-related air pollution (TRAP) to increased risk for various neurodevelopmental disorders (NDDs); however, there are limited preclinical data demonstrating a causal relationship between TRAP and adverse neurodevelopmental outcomes. Moreover, much of the preclinical literature reports effects of concentrated ambient particles or diesel exhaust that do not recapitulate the complexity of real-world TRAP exposures. To assess the developmental neurotoxicity of more realistic TRAP exposures, we exposed male and female rats during gestation and early postnatal development to TRAP drawn directly from a traffic tunnel in Northern California and delivered to animals in real-time. We compared NDD-relevant neuropathological outcomes at postnatal days 51-55 in TRAP-exposed animals versus control subjects exposed to filtered air. As indicated by immunohistochemical analyses, TRAP significantly increased microglial infiltration in the CA1 hippocampus, but decreased astrogliosis in the dentate gyrus. TRAP exposure had no persistent effect on pro-inflammatory cytokine levels in the male or female brain, but did significantly elevate the anti-inflammatory cytokine IL-10 in females. In male rats, TRAP significantly increased hippocampal neurogenesis, while in females, TRAP increased granule cell layer width. TRAP had no effect on apoptosis in either sex. Magnetic resonance imaging revealed that TRAP-exposed females, but not males, also exhibited decreased lateral ventricular volume, which was correlated with increased granule cell layer width in the hippocampus in females. Collectively, these data indicate that exposure to real-world levels of TRAP during gestation and early postnatal development modulate neurodevelopment, corroborating epidemiological evidence of an association between TRAP exposure and increased risk of NDDs.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/toxicity , Air Pollution/adverse effects , Animals , Brain , Female , Male , Rats , Rats, Sprague-Dawley , Vehicle Emissions/toxicity
12.
Toxicol Lett ; 328: 52-60, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32320776

ABSTRACT

Ambient PM2.5 was collected during the winter season from Taiyuan, Shanxi, China; Jinan, Shandong, China; and Sacramento, California, USA, and used to create PMSX, PMSD, and PMCA extracts, respectively. Time-lag experiments were performed to explore the in vivo and in vitro toxicity of the PM extracts. In vivo inflammatory lung responses were assessed in BALB/c mice using a single oropharyngeal aspiration (OPA) of PM extract or vehicle (CTRL) on Day 0. Necropsies were performed on Days 1, 2, and 4 post-OPA, and pulmonary effects were determined using bronchoalveolar lavage (BAL) and histopathology. On Day 1, BAL neutrophils were significantly elevated in all PM- versus CTRL-exposed mice, with PMCA producing the strongest response. However, histopathological scoring showed greater alveolar and perivascular effects in PMSX-exposed mice compared to all three other groups. By Day 4, BAL neutrophilia and tissue inflammation were resolved, similar across all groups. In vitro effects were examined in human HepG2 hepatocytes, and U937 cells following 6, 24, or 48 h of exposure to PM extract or DMSO (control). Luciferase reporter and quantitative polymerase chain reaction assays were used to determine in vitro effects on aryl hydrocarbon receptor (AhR) activation and gene transcription, respectively. Though all three PM extracts activated AhR, PMSX produced the greatest increases in AhR activation, and mRNA levels of cyclooxygenase-2, cytochrome P450, interleukin (IL)-8, and interleukin (IL)-1ß. These effects were assumed to result from a greater abundance of polycyclic aromatic hydrocarbons (PAHs) in PMSX compared to PMSD and PMCA.


Subject(s)
Air Pollutants/toxicity , Environmental Monitoring/methods , Lung/drug effects , Lung/immunology , Particulate Matter/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , California , China , Cytokines/metabolism , Hep G2 Cells , Humans , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Particle Size , Receptors, Aryl Hydrocarbon/genetics , Transcription, Genetic/drug effects , U937 Cells
13.
Physiol Rep ; 6(18): e13827, 2018 09.
Article in English | MEDLINE | ID: mdl-30230272

ABSTRACT

Ambient particulate matter (PM) exacerbates airway inflammation and hyper-reactivity in asthmatic patients. Studies show that PM has adjuvant-like properties that enhance the allergic inflammatory response; however, the mechanisms through which PM enhances these processes remain elusive. The objective of the study was to examine how ambient PM enhances the allergic immune response. Eight-week-old BALB/c mice were sensitized with house dust mite (HDM) or HDM and ambient particulate matter (PM, 2.5 µm; Sacramento, CA) to assess how PM modulates the development of adaptive immune responses against allergens. Both groups were challenged with HDM only. Bronchoalveolar lavage (BAL) was analyzed for extent of airway inflammation. Lung tissue was used for histological analysis, mucosubstance quantification, and heme oxygenase-1 (HO-1) localization/quantification. Gene expression was analyzed in whole lung to characterize immune markers of inflammation: cytokines, chemokines, antioxidant enzymes, and transcription factors. Cytokine and chemokine protein levels were quantified in whole lung to confirm gene expression patterns. Compared to HDM-only sensitization, exposure to PM during HDM sensitization led to significant immune cell recruitment into the airway subepithelium, IgE gene expression, mucosubstance production, and Th2-associated cytokine expression. HO-1 levels were not significantly different between the treatment groups. Gene expression profiles suggest that polycyclic aromatic hydrocarbon (PAH) content in PM activated the aryl hydrocarbon receptor (AhR) and enhanced Th17-responses in the mice that received HDM and PM compared to mice that received HDM-only. The findings suggest that PM enhances allergic sensitization via enhancement of Th2-mediated inflammation and that AhR activation by PAHs in PM promotes Th17-immune responses.


Subject(s)
Hypersensitivity/immunology , Immunity, Cellular/immunology , Particulate Matter/immunology , Pyroglyphidae/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Hypersensitivity/etiology , Hypersensitivity/pathology , Immunity, Cellular/drug effects , Male , Mice , Mice, Inbred BALB C , Particulate Matter/toxicity , Random Allocation , Th17 Cells/drug effects , Th17 Cells/pathology , Th2 Cells/drug effects , Th2 Cells/pathology
14.
Toxicol Sci ; 164(2): 627-643, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29846732

ABSTRACT

Asthma is a global and increasingly prevalent disease. According to the World Health Organization, approximately 235 million people suffer from asthma. Studies suggest that fine particulate matter (PM2.5) can induce innate immune responses, promote allergic sensitization, and exacerbate asthmatic symptoms and airway hyper-responsiveness. Recently, severe asthma and allergic sensitization have been associated with T-helper cell type 17 (TH17) activation. Few studies have investigated the links between PM2.5 exposure, allergic sensitization, asthma, and TH17 activation. This study aimed to determine whether (1) low-dose extracts of PM2.5 from California (PMCA) or China (PMCH) enhance allergic sensitization in mice following exposure to house dust mite (HDM) allergen; (2) eosinophilic or neutrophilic inflammatory responses result from PM and HDM exposure; and (3) TH17-associated cytokines are increased in the lung following exposure to PM and/or HDM. Ten-week-old male BALB/c mice (n = 6-10/group) were intranasally instilled with phosphate-buffered saline (PBS), PM+PBS, HDM, or PM+HDM, on days 1, 3, and 5 (sensitization experiments), and PBS or HDM on days 12-14 (challenge experiments). Pulmonary function, bronchoalveolar lavage cell differentials, plasma immunoglobulin (Ig) protein levels, and lung tissue pathology, cyto-/chemo-kine proteins, and gene expression were assessed on day 15. Results indicated low-dose PM2.5 extracts can enhance allergic sensitization and TH17-associated responses. Although PMCA+HDM significantly decreased pulmonary function, and significantly increased neutrophils, Igs, and TH17-related protein and gene levels compared with HDM, there were no significant differences between HDM and PMCH+HDM treatments. This may result from greater copper and oxidized organic content in PMCA versus PMCH.


Subject(s)
Hypersensitivity/immunology , Particulate Matter/immunology , Pyroglyphidae/immunology , Th17 Cells/immunology , Allergens/chemistry , Allergens/immunology , Allergens/pharmacology , Animals , Bronchoalveolar Lavage Fluid/immunology , California , Cytokines/metabolism , Interleukin-17/metabolism , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Models, Animal , Neutrophils/immunology , Neutrophils/metabolism , Particulate Matter/chemistry , Pneumonia , Random Allocation , Respiratory Hypersensitivity/immunology
15.
Toxicol Lett ; 292: 85-96, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29689377

ABSTRACT

The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR-/-) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR-/- BMDCs with autologous naive T cells. PM2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM2.5 induced interleukin (IL)-1ß, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/agonists , Dendritic Cells/drug effects , Immunity, Innate/drug effects , Lymphocyte Activation/drug effects , Particulate Matter/toxicity , Receptors, Aryl Hydrocarbon/agonists , Th17 Cells/drug effects , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Coculture Techniques , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hep G2 Cells , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Receptors, Aryl Hydrocarbon/deficiency , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Response Elements , Signal Transduction/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism
16.
Toxicol Lett ; 278: 1-8, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28698096

ABSTRACT

Airborne particulate matter (PM) is associated with adverse cardiorespiratory effects. To better understand source-orientated PM toxicity, a comparative study of the biological effects of fine PM (diameter≤2.5µm, PM2.5) collected during the winter season from Shanxi Province, China, and the Central Valley, California, United States, was conducted. The overarching hypothesis for this study was to test whether the chemical composition of PM on an equal mass basis from two urban areas, one in China and one in California, can lead to significantly different effects of acute toxicity and inflammation in the lungs of healthy young mice. Male, 8-week old BALB/C mice received a single 50µg dose of vehicle, Taiyuan PM or Sacramento PM by oropharyngeal aspiration and were sacrificed 24h later. Bronchoalveolar lavage, ELISA and histopathology were performed along with chemical analysis of PM composition. Sacramento PM had a greater proportion of oxidized organic material, significantly increased neutrophil numbers and elevated CXCL-1 and TNF-α protein levels compared to the Taiyuan PM. The findings suggest that Sacramento PM2.5 was associated with a greater inflammatory response compared to that of Taiyuan PM2.5 that may be due to a higher oxidice. Male, 8-week old BALB/C mice received a single 50µg dose of vehicle, Taiyuan PM or Sacramento PM by oropharyngeal aspiration and were sacrificed 24h later. Bronchoalveolar lavage, ELISA and histopathology were performed along with chemical analysis of PM composition. Sacramento PM had a greater proportion of oxidized organic material, significantly increased neutrophil numbers and elevated CXCL-1 and TNF-α protein levels compared to the Taiyuan PM. The findings suggest that Sacramento PM2.5 was associated with a greater inflammatory response compared to that of Taiyuan PM2.5 that may be due to a higher oxidized state of organic carbon and copper content.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Particulate Matter/toxicity , Pneumonia/chemically induced , Seasons , Animals , Bronchoalveolar Lavage Fluid/immunology , California , Chemokine CXCL1/metabolism , China , Enzyme-Linked Immunosorbent Assay , Inflammation Mediators/metabolism , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Mass Spectrometry/methods , Mice, Inbred BALB C , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Oxidative Stress/drug effects , Particle Size , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Time Factors , Tumor Necrosis Factor-alpha/metabolism
17.
J Toxicol Environ Health A ; 80(4): 197-207, 2017.
Article in English | MEDLINE | ID: mdl-28494199

ABSTRACT

Ambient particulate matter (PM), a component of air pollution, exacerbates airway inflammation and hyperreactivity in asthmatic patients. Studies showed that PM possesses adjuvant-like properties that enhance the allergic inflammatory response; however, the mechanism (or mechanisms) by which PM enhances the allergic response remains to be determined. The aim of this study was to assess how exposure to fine PM collected from Sacramento, CA, shapes the allergic airway immune response in BALB/c mice undergoing sensitization and challenge with ovalbumin (OVA). Eight-week-old BALB/c male mice were sensitized/challenged with phosphate-buffered saline (PBS/PBS; n = 6), PM/PBS (n = 6), OVA/OVA (n = 6), or OVA + PM/OVA (n = 6). Lung tissue, bronchoalveolar lavage fluid (BALF), and plasma were analyzed for cellular inflammation, cytokines, immunoglobulin E, and heme oxygenase-1 (HO-1) expression. Mice in the OVA + PM/OVA group displayed significantly increased airway inflammation compared to OVA/OVA animals. Total cells, macrophages, and eosinophils recovered in BALF were significantly elevated in the OVA + PM/OVA compared to OVA/OVA group. Histopathological grading indicated that OVA + PM/OVA treatment induced significant inflammation compared to OVA/OVA. Both immunoglobulin (Ig) E and tumor necrosis factor (TNF) α levels were significantly increased in OVA/OVA and OVA + PM /OVA groups compared to PBS/PBS control. The number of HO-1 positive alveolar macrophages was significantly elevated in lungs of mice treated with OVA + PM /OVA compared to OVA/OVA. Our findings suggest that fine PM enhances allergic inflammatory response in pulmonary tissue through mechanisms involving increased oxidative stress.


Subject(s)
Air Pollutants/toxicity , Immunity, Innate/drug effects , Inflammation , Ovalbumin/toxicity , Particulate Matter/toxicity , Animals , Bronchoalveolar Lavage Fluid/immunology , California , Cities , Inflammation/blood , Inflammation/chemically induced , Inflammation/immunology , Lung/drug effects , Lung/immunology , Male , Mice , Mice, Inbred BALB C , Particle Size , Random Allocation
18.
Atmos Environ (1994) ; 119: 174-181, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26568698

ABSTRACT

The EPA regulates ambient particulate matter (PM) because substantial associations have been established between PM and health impacts. Presently, regulatory compliance involves broad control of PM emission sources based on mass concentration rather than chemical composition, although PM toxicity is likely to vary depending upon PM physicochemical properties. The overall objective of this study was to help inform source-specific PM emission control regulations. For the first time, source-oriented PM was collected from the atmosphere in Fresno, CA, onto 38 source/size substrates. Mice were exposed via oropharyngeal aspiration to equivalent mass doses [50 µg] of two size fractions: ultrafine (Dp < 0.17µm) and submicron fine (0.17 < Dp < 1 µm) during summer and winter seasons. At 24 hours post-exposure, cellular and biochemical indicators of pulmonary inflammation were evaluated in the bronchoalveolar lavage fluid. Significant inflammatory responses were elicited by vehicle, regional background, and cooking PM sources that were dependent on season and particle size. This is the first study of source-oriented toxicity of atmospheric PM and supports source-specific emissions control strategies.

19.
J Toxicol Environ Health A ; 78(4): 254-66, 2015.
Article in English | MEDLINE | ID: mdl-25679046

ABSTRACT

Ambient particulate matter (PM) originates from a range of sources and differs in composition with respect to season, time of day, and particle size. In this study, ambient PM samples in the ultrafine and submicrometer fine range were tested for the potential to exacerbate a murine model of allergic airway inflammation when exposure occurs solely during allergic sensitization, but not during subsequent allergen challenge. Temporally resolved and size-segregated PM samples were used to understand how summer or winter, day or night, and ambient ultrafine and submicrometer fine particle size influence PM's ability to exacerbate allergic inflammation. PM was collected in urban Fresno, CA. BALB/c mice were exposed to PM and house dust mite allergen (HDM) via intranasal aspiration on d 1, 3, and 5. HDM challenge occurred on d 12-14, with inflammation assessed 24 h following final challenge. While season or particle size did not predict allergic inflammation, daytime ultrafine and submicrometer fine particles significantly increased total cellular inflammation, specifically lymphocyte and eosinophil infiltration, compared to allergic controls. Further studies examined PM-mediated changes within the lung during the period where allergen sensitization occurred by measuring direct effects of PM on pulmonary oxidative stress and inflammation. Pulmonary levels of heme oxygenase-1 (HO-1), a biomarker of oxidative stress, but not cellular inflammation, demonstrated a remarkable correlation with the degree of allergic inflammation in animals sensitized to allergen and PM concomitantly, suggesting acute PM-mediated HO-1 levels may serve as a predictive indicator of a particle's ability to exacerbate allergic airway inflammation.


Subject(s)
Bronchial Hyperreactivity/immunology , Heme Oxygenase-1/metabolism , Inflammation/immunology , Membrane Proteins/metabolism , Particulate Matter/toxicity , Allergens/immunology , Animals , Bronchial Hyperreactivity/chemically induced , Bronchoalveolar Lavage Fluid/immunology , Cell Differentiation/drug effects , Disease Models, Animal , Immunoglobulin E/immunology , Inflammation/chemically induced , Male , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Particle Size
20.
Am J Physiol Lung Cell Mol Physiol ; 304(10): L665-77, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23502512

ABSTRACT

Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM.


Subject(s)
Cytochrome P-450 Enzyme System/biosynthesis , Lung/drug effects , Lung/enzymology , Particulate Matter/pharmacology , Silicones/pharmacology , Animals , Animals, Newborn , Aryl Hydrocarbon Hydroxylases/biosynthesis , Cells, Cultured , Cytochrome P-450 CYP1A1/biosynthesis , Cytochrome P-450 CYP1B1 , Enzyme Induction , Humans , Lung/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/metabolism , U937 Cells , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...